Projet de fin d'étude : Commande vectorielle d'un Moteur synchrone a aimant Permanent

Etudiant : BOUJELLAB MOHAMED

Filière : LF SMP - Option Electronique

Encadrant : Pr. BOSSOUFI BADRE

Annèe : 2022

Résumé : Dans ces vingt dernières années, le domaine de la conversion de l'énergie électrique a été marqué, comme de nombreux autres domaines, par la révolution de l'électronique de puissance et de la microinformatique. Les méthodes classiques de variation de vitesse (mécaniques et électromécaniques) ont été peu à peu dépassées par des ensembles associant des convertisseurs statiques à des moteurs électriques. Historiquement, le moteur à courant continu a parfaitement assuré le fonctionnement de la plupart d'équipements industriels. Cependant, son principal défaut reste le collecteur mécanique que l'on tolère mal dans certains environnements et qui fait augmenter les coûts d'entretien. Ces contraintes ont dirigé les études vers les entraînements équipés de machines à courant alternatif . Pour toutes ces raisons, l’orientation vers les recherches aboutissant à des meilleures exploitations d’un robuste actionneur, est très justifiée, à savoir, le moteur asynchrone à cage et le moteur synchrone à aimants permanents (MSAP), qui sont robustes et ont une construction simple qui limite le coût et augmente le rapport de puissance massique. C’est pourquoi les machines à courant alternatif remplacent de plus en plus les moteurs à courant continu dans de nombreux domaines tels que les servomoteurs. Les nouvelles applications nécessitent des variateurs de vitesse ayant des hautes performances dynamiques, une bonne précision en régime permanent, une haute capacité de surcharge sur toute la plage de vitesse et une robustesse aux différentes perturbations. Ces dernières années, plusieurs techniques ont été développées pour permettre au variateur d'atteindre ces performances. La commande vectorielle permet d'avoir une dynamique proche de celle de la machine à courant continu, autrement dit, une dynamique asymptotiquement linéaire et découplée. Cependant, cette structure de commande nécessite que les paramètres de la machine soient précis. Ceci exige une bonne identification des paramètres. En conséquence, le recours à des algorithmes de commande robuste, pour maintenir un niveau de découplage et de performance acceptable.