Projet de fin d'étude : Modèles mathématiques et contrôle optimal d'interactions Système immunitaire-Tumeur.

Etudiant : BENCHAKRYA FATIMA ZAHRA

Filière : Master Mathématiques Appliquées et Science des données (MASD)

Encadrant : Pr. AIT HAMMOU Mustapha

Annèe : 2024

Résumé : Cette thése aborde la genèse du cancer, les interactions entre le système immunitaire et les tumeurs, ainsi que des modèles mathématiques et des traitements pour la croissance tumorale. Tout d'abord, le mémoire introduit le contexte biologique et la genèse du cancer, expliquant les aspects biologiques essentiels au développement du cancer. Ensuite, il présente les résultats mathématiques nécessaires à l'étude des modèles détaillés par la suite. Puis, plusieurs modèles et interactions entre le système immunitaire et la tumeur sont examinés. Cette partie inclut une analyse mathématique des modèles, suivie de simulations numériques et d'interprétations des résultats obtenus. De plus, une étude approfondie est menée sur un modèle contrôlé pour le cancer du sein, intégrant des variables de contrôle pour les traitements par chimiothérapie et immunothérapie. Un problème de contrôle optimal est proposé, visant à réduire la densité de la tumeur ainsi que les doses de traitement sur une période donnée. Cette partie se conclut par la caractérisation des doses optimales de traitements selon le Principe de Maximum de Pontryagin et des simulations numériques. En outre, cette thèse se termine par une conclusion et des perspectives de recherche, récapitulant les principaux résultats et proposant des directions pour les recherches futures. Enfin, une annexe contenant les codes Mathlab utilisés pour les figures et simulations présentées dans les modèles étudiés est incluse.